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An explicit algebraic Reynolds stress model in turbulence
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SUMMARY

A new algebraic Reynold stress model is constructed with recourse to the realizability constraints. Model
coe�cients are made a function of strain and vorticity invariants through calibration by reference
to homogeneous shear �ow data. The anisotropic production in near-wall regions is accounted for
substantially by modifying the model constants C�(1; 2) and adding a secondary source term in the �
equation. Hence, it reduces the kinetic energy and length scale magnitudes to improve prediction of
adverse pressure gradient �ows, involving �ow separation and reattachment. To facilitate the evaluation
of the turbulence model, some extensively used benchmark cases in the turbulence modelling are
convoked. The comparisons demonstrate that the new model maintains qualitatively good agreement
with the direct numerical simulation (DNS) and experimental data. Copyright ? 2006 John Wiley &
Sons, Ltd.

KEY WORDS: turbulence anisotropy; realizability; production to dissipation ratio; �ow separation
and reattachment

1. INTRODUCTION

With relevance to constantly increasing demands on predictive capability of the Reynolds-
averaged Navier–Stokes (RANS) formulation for complex �ows, the need for more appropriate
turbulence closures has also escalated. Conceptually, the full Reynolds stress closure approach
entangles the history=nonlocal e�ects of turbulence automatically and o�ers the most accurate
predictive performance in calculating all types of turbulent �ows. However, the Reynolds stress
closure method inherits severe complications that discourage many users simply to implement
it, particularly for complex �ows where the integration up to the wall via a low-Reynolds
number scheme is extremely important.
In principle, the Reynolds stress model is formulated to describe complex turbulent �ows

where there are signi�cant departures from equilibrium. With the help of the equilibrium
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hypothesis, Rodi [1] proposed an idea of obtaining the algebraic stress model (ASM) from
the second-order closure. Physically, two assumptions are made in the algebraic Reynolds
stress closures: the di�erence between the convection and di�usion terms in the Reynolds
stress equation is proportional to the corresponding di�erence in the turbulent kinetic energy
equation, and the Reynolds stress anisotropy bij is constant along a streamline. It provides
algebraic equations without solving the di�erential equations for the Reynolds stresses.
Invoking the same equilibrium hypothesis as Rodi, Pope [2] developed a methodology to
procure an explicit relation for the Reynolds stress tensor from the implicit algebraic stress
model by using a tensorial polynomial expansion in the integrity basis. Gatski and
Speziale [3] used this method to derive an explicit algebraic stress equation for two- and
three-dimensional turbulent �ows. In order to generalize the results, the algebraic stress
representation is applied to the general class of pressure–strain correlation models [4], which
are linear in the anisotropic tensor. After regularization, an anisotropic eddy viscosity model
with strain-dependent coe�cients is achieved, which has been referred to as an explicit
ASM. The explicit model extends the ability of the two-equation models to account for
nonequilibrium and anisotropic e�ects. However, the model shows evidence of numerical
instability when the �ow is far from equilibrium [5]. The reason is that the ASM is more
susceptible to the rotational strains. Girimaji [6] developed a fully explicit, self-consistent
variant of the Gatski–Speziale model, by solving the cubic equation for Pk=� (production to
dissipation ratio) arising in the context of the selected pressure–strain model. Although this
achievement yielded a new model variant, the resulting solution for Pk=� is unfortunately too
cumbersome to be implemented.
At the two-equation level of turbulence modelling, the ASM unambiguously constitutes an

attractive and viable alternative for the Reynolds stress model. However, the ASM is derived
by subjecting the anisotropy transport equation to the weak equilibrium constraint that limits
its application for �ows where advection by the mean �ow and turbulent transport dominate
the evolution of the Reynolds stress [7]. In addition, the ASM contains the main weakness
of the standard Reynolds stress closure model stemming from inadequate modelling of the
pressure–strain correlation [8]. Despite these limitations, the ASM is viewed as one of the most
sophisticated closure strategies and quite appropriate to capture the essential phenomenological
features of turbulence. For instance, it retains a factor of major physical relevance, namely
the distinction between the components of the Reynolds stress tensor, though not accounting
for their transport histories.
The turbulence model developed in this study is an explicit ASM, constructed with

resorting to the realizability constraints, i.e. the positivity of the normal Reynolds stresses
and Schwarz’ inequality between turbulent velocity correlations. Sticking to the realizability
constraints, the model coe�cients are made a function of strain and vorticity invariants through
calibration by reference to DNS data for homogeneous shear �ows. In near-wall regions, the
anisotropic production in the � equation is accounted for substantially by modifying the model
constants C�(1;2) and adding a secondary source term. The wall singularity is removed by
using a physically appropriate time scale that never falls below the Kolmogorov time scale√
�=�, representing the time scale realizability enforcement accompanied by the near-wall

turbulent phenomena. A near-wall eddy viscosity damping function f� is introduced which
reproduces the distinct e�ects of low-Reynolds number and wall proximity. In addition, the
turbulent Prandtl numbers �(k; �) are adjusted so as to provide substantial turbulent di�usion in
near-wall regions.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1135–1157



REYNOLDS STRESS MODEL IN TURBULENCE 1137

The model performance is validated against experimental and DNS data of well-documented
�ows, consisting of a fully developed channel �ow, a �at plate boundary layer �ow with
zero pressure gradient, a backward-facing step �ow and an asymmetric plane di�user �ow,
respectively. Particular attention is paid to assess the capability of the new model, relative to
the low-Reynolds number linear k–� models of So et al. [9] and Rahman and Siikonen [10],
when used to predict the �ows associated with transition, �ow separation and reattachment.
A concrete analysis of the simulated results is provided.

2. TURBULENCE MODELLING

The two-dimensional RANS equations, including the equations for the turbulent kinetic energy
k and dissipation �, can be written in the following form:
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=Q (1)
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Here � is the density and p is the pressure. The total internal energy is de�ned as

E=�e+
�V·V
2

+ �k (3)

where e is the speci�c internal energy and V= ui+ vj is the velocity. The viscous �uxes are
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and the viscous stress tensor can be given as

�ij=2�(Sij − 1
3Skk�ij)− �uiuj (5)
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where � is the laminar viscosity, Sij is the mean strain rate tensor and �uiuj are the Reynolds
stresses. The heat �ux is calculated from

q=−
(
�
cp
Pr
+ �T

cp
�t

)
∇T (6)

where �T is the coe�cient of turbulent eddy viscosity, cp is the speci�c heat at constant
pressure, Pr and �t represent the laminar and turbulent Prandtl numbers, respectively, and T
implies the temperature. Clearly, the turbulent part of the total heat �ux is estimated using
the Boussinesq approximation. The value of �t is chosen to be 0.9 [11]. The di�usion of
turbulence is modelled as

�k∇k=
(
�+

�T
�k

)
∇k; ��∇�=

(
�+

�T
��

)
∇� (7)

where �k and �� are the appropriate turbulent Prandtl numbers. The source term Q for the k
and � equations can be written as

Q=

⎛
⎜⎝

�P − ��
C�1�P − C�2��+ E�

Tt

⎞
⎟⎠ (8)

where the turbulent production term P=−uiuj(@ui=@xj) and E� is a secondary source term
designed to increase the level of � in nonequilibrium �ow regions. The symbolized Tt is
the characteristic (mixed=hybrid) time scale, having the asymptotic consistency in the near-
wall region. The modelling of �uiuj in the explicit ASM and associated relevant aspects are
discussed in some detail in subsequent sections.

2.1. Explicit ASM

The rationale provoking the extension of the Reynolds stress to nonlinear form refers to
improved performance with the inclusion of strain rate and vorticity tensors to capture
anisotropy. The explicit expansion to the Reynolds stress tensor �uiuj that constitutes an
anisotropic eddy viscosity model can be written as [12]

�uiuj = 2
3�k�ij − 2�T [(Sij − 1

3Skk�ij) + �1Tt(SikWkj + SjkWki)

− �2Tt(SikSkj − 1
3SklSkl�ij)] (9)

In particular, many quadratic stress–strain relations have been proposed to extend the
applicability of linear eddy viscosity models at modest computational cost. However,
comparison shows that none achieves much greater width of applicability for practical �ows
[13]. Therefore, one can certainly formulate more accurate alternative practices, for instance
a cubic stress–strain relation, which is beyond the scope of the present work. Considering the
quadratic approach as an example, this study is devoted to the removal of unphysical behaviour
(i.e. negative energy components) from the model formulation, which is not guaranteed by
many other nonlinear turbulence models [14].
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Since the viscous dissipation presumably dominates near the wall, the eddy viscosity is
evaluated from

�T =C�f��kTt (10)

where the dynamic time scale k=� is replaced by Tt , a distinct turbulence time scale and f�
denotes the eddy viscosity damping function. The model coe�cients (C�; �1; �2) in
Equations (9) and (10) are in general scalar functions of the invariants formed on the strain
rate Sij and vorticity Wij tensors in question [2, 3]:
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1
2

(
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@xj

+
@uj
@xi

)
; Wij=

1
2

(
@ui
@xj

− @uj
@xi

)
(11)

The invariants of mean strain rate and vorticity tensors are de�ned by S=
√
2SijSij and

W =
√
2WijWij, respectively. The detailed functional forms of the model coe�cients are

determined relying on the constraints such as realizability and appropriate experiments.
The physically necessary conditions for a turbulence model are the realizability conditions

that can be de�ned as [4]

u2i¿0;
uiuj2

u2i u2j
61 (12)

Equation (12) also represents the minimal requirement to prevent a turbulence model from
producing nonphysical results. The commonly used isotropic k–� eddy viscosity model with
a constant C�=0:09 becomes unrealizable in the case of a large mean strain rate parameter
TtS (when TtS ¿ 3:7), producing negative normal stresses and Equation (12) is violated [15].
To ensure realizability, the model coe�cient C� cannot be a constant. It must be related with
the mean �ow deformation rate.
Obviously, the anisotropic eddy viscosity model augments the capacity of the two-equation

models to account for nonequilibrium e�ects through the coe�cient C�. To serve this purpose,
a plausible formulation for C� is devised as

C�=
1

2(1 + Tt
√
S2 +W 2)

(13)

Actually, C� is calibrated focusing attention on the homogeneous shear �ow, characterized by

S12 = S=2= S21; W12 = S=2=−W21 (14)

Based on this �ow characteristic and the property limS→∞ Pk=� ∼ S [16], an evolution equation
for Pk=� can be procured:

Pk
�
=C�	2 (15)

where 	=Tt max(S;W ). It is appropriate to emphasize herein that the proposed relation meets
the requirements of the equilibrium state: Pk=�≈ 1 with C� ≈ 0:09 for the logarithmic region
in a turbulent channel �ow at 	=Tt(S=W )≈ 3:3 [17], and Pk=�≈ 1:9 with C� ≈ 0:052 for
the homogeneous shear �ow of Tavoularis and Corrsin [18] at 	=6:0, respectively. Note that
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the log-layer of a channel �ow is a region where the Reynolds stress equation has the same
form as in the homogeneous case [19].
Figure 1 illustrates the distribution of C� as a function of 	=Tt(S=W ). As is evident, the

C� distribution is in excellent agreement with various DNS data [20–22]. The proposed C� is
reduced signi�cantly with increasing 	 and maintained at a level that could mimic the complex
turbulent �ows. However, it seems likely that C� converges toward a high value 0.5 (here, in
particular, compared with the traditional C�=0:09) as 	→ 0. In principle, the value of C� is
very �ow dependent and experimental evidences [23] indicate a range as large as 0:03–0:6,
substantiating the behaviour of present C� worthily. The pro�les of Pk=� are displayed in
Figure 2. Clearly, relation (15) recovers the self-consistent models of Girimaji [6] and Jongen
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Figure 1. Distribution of C� as a function of shear parameter 	.
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Figure 2. Locus of solution points for state variable Pk=� as a function of 	.
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and Gatski [16] for the weak equilibrium condition. The new calibrated relation for Pk=� can
assist in determining the coe�cients �(1;2) in Equation (9).
To make the eddy viscosity model realizable, the necessity to account for changes in the

coe�cients �(1;2) associated with Equation (9), is acknowledgeable. The constant coe�cients
�(1;2) can potentially lead to the prediction of nonphysical normal stress components, and
thereby violate the realizability principle. Recourse to the modelling relevancy (i.e. realiz-
ability constraints) and DNS data for homogeneous shear �ows, the coe�cients �(1;2) are
regularized as

�1 =
(
1 + 
+ 2

Pk
�

)−1
; �2 =

(
2 + 
+ 2

Pk
�

)−1
(16)

where 
=
√
C�Pk=� and Pk=� is de�ned in Equation (15). Conspicuously, the coe�cients

are capable of responding to the shear=vorticity dominated �ows and maintain the physical
consistency in the context of a mild departure from equilibrium.
The Reynolds stress anisotropy, de�ned as

bij=
uiuj
2k

− 1
3
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in homogeneous shear �ow, can be derived from Equation (9) as
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Detailed comparisons of the anisotropies with the DNS data are shown in Table I for the
channel �ow of Reference [17] in the inertial sublayer at 	=3:3, and in Table II for the homo-
geneous shear �ow of Tavoularis and Corrsin [18] at 	=6:0, respectively. Clearly, the

Table I. Anisotropy in the log layer of channel �ow.

bij DNS Standard Present

b11 0.175 0.0 0.169
b12 −0.145 −0.149 −0.145
b22 −0.145 0.0 −0.131
b33 −0.03 0.0 −0.038

Table II. Anisotropy in homogeneous shear �ow.

bij DNS Standard Present

b11 0.202 0.0 0.212
b12 −0.142 −0.273 −0.158
b22 −0.145 0.0 −0.160
b33 −0.057 0.0 −0.052
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present model provides some anisotropy of Reynolds stresses for both the boundary layer and
homogeneous shear �ows, compared with the standard k–� eddy viscosity model. Therefore, it
is capable of predicting the turbulent driven secondary �ows. The proposed model anisotropy
is in fairly good agreement with the data. This improvement is mainly creditable to the
behaviour of C�, persuading a nonequilibrium e�ect on the turbulent eddy viscosity.
The Lumley triangle, i.e. the anisotropy invariant map [4] contains all physically realizable

states of turbulence. Every realizable Reynolds stress adhering to a turbulent �ow corresponds
to a point in the Lumley triangle. Figure 3 shows the behaviour of the present model in
the (IIIb; IIb) phase space (where IIb= bipbpi and IIIb= bipbpqbqi) for a wide range of shear
parameters. As expected from the comparison with the DNS results (Tables I and II), the
model yields predictions in close proximity to the invariant values from the DNS as well.
Values of 	=Tt (S=W ) in the range 0–200 are considered to be adequate to conduct the
experiment. It is found that 	¿100 induces small changes in the invariants and ultimately, the
model saturates within the invariant triangle. This occurrence implies that even in a state with
high shear rates, the anisotropy state is not forced out of the allowed region of the invariant
map. Therefore, the present model ensures realizability for a pure shear �ow.
The model realizability is further contrasted with the accelerated �ow where turbulence

can be strongly attenuated [14]. The turbulence attenuation is characterized by plane straining
(where Wij=0 for all i and j), traditionally called stretching, rather than shear. Herein, the
most pronounced attenuation of turbulence kinetic energy is the evolution of the component
u1u1 in the direction of a primary strain S11. The fundamental stretching �eld together with
the continuity equation for incompressible �ow suggests that the limiting states are [14]: the
2-D stretching

S22 =−S11(S33 = 0); S11 = S=2 (19)

and the axisymmetric stretching

S22 = S33 =−S11=2; S11 = S=
√
3 (20)
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Figure 3. Homogeneous shear phase plane mapping at di�erent shear rates.
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The two cases in question are often associated with irrotational plane strain and axisymmetric
contraction of the �ow, having di�erent implications on the model realizability. In both cases,
the realizability principle applied to the present model implies that

u1u1
2k

=
1
3

− C� Tt
[
S11 − �2Tt

(
S11S11 − 1

3
S2kk

)]
¿0 (21)

The 2-D plane strain situation pertaining to Equation (21) may be given as
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6
	
)
6
1
3
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The corresponding axisymmetric contraction results in
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6
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6
1
3

(23)

where 	=TtS and 
=
√
C�Pk=�=C�	 resembles the anisotropy of turbulence. With attention

restricted to this �ow situation, the model coe�cients can be recast as
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It can be easily veri�ed that with Equation (24), relations (22) and (23) are satis�ed at a
moderate strain rate. However, if 	�1, then 	=(1+ 	)≈ 1. In this case, the coe�cients 
 and
�2 assume the following values:


≈ 1
2
; �2 ≈ 2

5 + 2	
(25)

Consequently, Equations (22) and (23) reduce to

1
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]
6
1
3
;
1
2

[
1√
3

− 	
3(5 + 2	)

]
6
1
3

(26)

Subsequently, one can certainly derive the conclusion that for 	�1, inequality (26) is satis�ed.
Both states are placed in the Lumley triangle as shown in Figure 4. Evidently, each state
remains in the allowed region of the invariant map. To this end, it must be stressed that the
present model does not exhibit unrealizable features at moderate=severe strain rates.

2.2. Near-wall modelling

In the vicinity of the wall, the molecular viscosity e�ect is superior to the turbulence mixing,
re�ecting a strong anisotropic condition. Consequently, an important criterion regarding the
appropriateness of the turbulence model is to represent the near-wall behaviour of turbulence
quantities accompanied by a preferential damping of velocity �uctuations in the direction
normal to the wall that reconciles the in�uence of wall proximity adequately.
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The realizable time scale Tt associated with the present ASM can simply be de�ned as [24]

Tt =

√
k2

�2
+ C2T

�
�
=
k
�

√
1 +

C2T
ReT

; ReT =
k2

��
(27)

where � denotes the kinematic viscosity and ReT is the turbulence Reynolds number.
Equation (27) warrants that the eddy time scale never falls below the Kolmogorov time
scale CT

√
�=�, dominant in the immediate neighbourhood of the solid wall. It prevents the

singularity in the dissipation equation down to the wall. Alternatively, the turbulence time
scale is k=� at large ReT but approaches the Kolmogorov limit CT

√
�=� for ReT � 1. The

empirical constant CT =
√
2 associated with the Kolmogorov time scale is estimated from the

behaviour of k in the viscous sublayer [25]. Articulately, the inclusion of Tt in the � equation
guarantees near-wall asymptotic consistency without resorting to ad hoc damping functions
employed in many k–� models [26].
In particular, the eddy viscosity damping function confronts the distinct e�ects of low-

Reynolds number and wall proximity in near-wall regions, and is devised pragmatically as

f�=1− exp
(
−y
L

)
; L2 = 2	(8 + C�ReT )

√
�3

�
(28)

where y is the normal distance from the wall and (�3=�)1=4 signi�es the Kolmogorov length
scale. The empirical function f� is valid in the whole �ow �eld, including the viscous sublayer
and the logarithmic layer. For C�ReT¿8, the present model C�f� seems likely to increase
proportionally to y−1 in the near-wall region, as evinced by Figure 5 in comparison with the
DNS data [27] for a fully developed turbulent channel �ow. Alternatively, the adopted form
of C�f� converges to replicate the in�uences of low-Reynolds number and wall proximity.
In this �gure the abbreviations SSGZ and MCH stand for the models of So et al. [9] and
modi�ed Chien [10], respectively. The product C� f� ≈ 0:09 (the standard choice for C�=0:09,
pertaining to the k–� model) remote from the wall to ensure that the model is compatible
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Figure 5. Variations of eddy viscosity coe�cients with wall distance in channel �ow.

with the standard k–� turbulence model. The use of f�=f�(y; L) confronts the singularity at
neither the separating nor the reattaching point in contrast to the adoption of y+ = u�y=�, where
u� is the friction velocity. Consequently, the model is applicable to separated and reattaching
�ows. In principle, the construction of C�f� compared with the traditional one [26] reduces the
potentiality of C�f� to grow particularly in near-wall regions (i.e. the traditional=conventional
formulation gets high magnitudes of C�f� while approaching the wall), as represented faith-
fully by Figure 5.
Near-wall �ows show a tendency to underestimate the dissipation rate � due to the

local anisotropy of turbulence, adhering to the nondimensional parameter P=� [28, 29]. The
formulation has been developed to enhance dissipation in such a situation using the relation:
C�1 =C∗

�1+a1P=�, where C
∗
�1 and a1 are model constants [30, 31]. However, this procedure can

cause numerical instability in more complex �ows. One possible approach to counteracting
this adverse situation is to explore alternative elements with relevance to P=�:

C�1 = 1 +
(


CT

)2
; C�2 =CT (29)

where 
 is evaluated earlier. It can be stressed that the rational subsistence 
 to P=� indubitably
is conducive to allowing a compatible change in C�1 (i.e. 16C�1¡1:1) which accounts for the
additional production of dissipation by the anisotropy of turbulence. Herein, one remarkable
departure from the conventional modelling needs to be noted. The coe�cient C�2 is reduced
from its usual value of 1.92 to CT =

√
2 while C�1 is made a function of the invariants. How-

ever, C�2=C�1 ≈ 1:35 in the log layer of channel �ow, (where 	=TtS=TtW =3:3) converging
toward the standard C�2-to-C�1 ratio (1:92=1:44=1:33).
The extra source term E� in Equation (8) is constructed from the most extensive turbulence

di�usion models for k and � equations derived by Yoshizawa [32] with the two-scale direct-
interaction approach using the inertial-range simpli�cation. To receive positive bene�ts from
the numerical reliability and to integrate the inertial-range condition directly to the solid wall,
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the cross-di�usion term is designed as [24]

E�=C�
�T
Tt
max

[
@(k=�)
@xi

@k
@xi
; 0
]

(30)

where C�=2. Obviously, the source term E� stimulates the energy dissipation in
nonequilibrium �ows, thereby reducing the departure of the turbulence length scale from its
local equilibrium value and enabling improved prediction of adverse pressure gradient �ows
accompanied by �ow separation and reattachment. At this stage, it appears necessary to
identify that the quantity E� is characteristically bene�cial in the vicinity of the reattachment
point and hence, it can be regarded as an attempt at replacing the Yap correction [33]. It is
appropriate to stress here that unlike the isotropic model with a constant C�, the present
anisotropic model having the standard values C�(1;2) (1:44; 1:92) and E� in the dissipation
equation, overestimates the recirculation length of separated �ows (for instance, backward
facing step and di�user �ows) compared with experimental data. To avoid this situation, the
above-mentioned physical adjustments are introduced with C�(1;2).
The budgets of k and � from the DNS data con�rm that the role of turbulence

di�usion in the near-wall region is substantial. Accordingly, the Prandtl numbers �k and �� are
modelled, rather than being assigned constant values (unlike the commonly adopted practice
with �k =1:0, and ��=1:3):

�k =C3=4� + f�; ��=
√
C� + f� (31)

The model coe�cients �k and �� are developed so that su�cient di�usion is obtained in the
vicinity of the wall. This contrivance tends to successfully predict the kinetic energy and
dissipation rate pro�les [34].
The transport equations for k and � are subjected to the following boundary conditions at

solid walls:

kw=0; �w=2�

(
@
√
k

@y

)2
≈ 2� k

y2n
(32)

To avoid numerical instability, the approximation for �w is applied at the �rst grid node
neighbouring the wall, rather than on the wall itself. This requires the normal distance from
a wall to the nearest grid point, which is unambiguous and readily available. The validity
of Equation (32) necessitates that the grid system is �ne enough to produce the near-wall
limiting behaviour.

3. COMPUTATIONS

To validate the generality and e�cacy of the present model, a few applications to two-
dimensional turbulent �ows consisting of a fully developed channel �ow, a �at plate boundary
layer �ow with zero pressure gradient, a backward-facing step �ow and an asymmetric plane
di�user �ow are considered. For a comparison purpose, calculations from the SSGZ and
MCH models are included. The possible reasoning for the choice of the isotropic SSGZ and
MCH models is that they contain similar types of near-wall correction terms having constant
coe�cients. Furthermore, they use the Kolmogorov and Taylor scales in the eddy viscosity
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damping functions to account for near-wall e�ects. Therefore, they are supposed to evaluate the
combined e�ects of low-Reynolds number and near-wall turbulence with reasonable accuracy.
However, compared with the SSGZ and MCH models, the new nonlinear model is additionally
sensitized to nonequilibrium and anisotropic e�ects.
A cell-centred �nite-volume scheme together with an arti�cial compressibility approach [35]

is employed to solve the �ow equations. In the arti�cial compressibility method, the arti�cial
compressibility is principally added to the derivative of density with respect to the pressure,
in�uencing not only the continuity equation but also the other equations. The energy equation
is not decoupled from the system of equations, which facilitates a uniform treatment for
both the primitive and conservative variables. A fully upwinded second-order spatial di�er-
encing is applied to approximate the convective terms. Roe’s damping term [36] is used to
calculate the �ux on the cell face. A diagonally dominant alternating direction implicit
(DDADI) time integration method [37] is applied for the iterative solution of the discretized
equations. A multigrid method is utilized for the acceleration of convergence [38]. The basic
implementation of the arti�cial compressibility method and associated features are described in
References [35, 39].
A variable grid spacing is used to resolve the sharp gradient in near-wall regions. Grid

densities are varied to ensure the grid independence of the numerical results. It is found
that the solution is not very sensitive to the number of grid points as long as there are two
points in y+¡1:5. In the computations that follow, convergence is judged by monitoring the
root-mean-square residuals of mass and momentum. The solution is taken as having converged
when all residuals are of the order 10−4 or less. To this end, it must be emphasized that com-
paring with the present nonlinear model, the isotropic turbulence models (i.e. SSGZ and MCH)
converse to a lower state for the same number of iteration cycles. In principle, the additional
correction terms in the Reynolds stress expression of the anisotropic model are dispersive
rather than dissipative, a feature that slows down the convergence.

3.1. Channel �ow

Computations are carried out for a fully developed turbulent channel �ow at Re�=180,
for which turbulence quantities are attainable from the DNS data [27]. Calculations are
conducted in the half-width of the channel, imposing periodic boundary conditions, except for
the pressure, pertaining to the upstream and downstream boundaries. A 48× 48 nonuniform
grid re�nement is considered to be su�ciently accurate to describe the �ow characteristics.
For this case, the length of the computational domain is 32�, where � is the channel half-
width. To ensure the resolution of the viscous sublayer, the �rst grid node near the wall is
placed at y+ ≈ 0:4. Comparisons are made by plotting the results in the form of u+ = u=u�,
k+ = k+=u2� , uv

+ = uv=u2� , �
+ = ��=u4� , uu

+ =
√
uu=u�, vv+ =

√
vv=u� and ww+ =

√
ww=u� versus

y+. To compute the ww component for this two-dimensional �ow, the usual approximation
ww=2k − uu− vv is employed.
Figure 6 shows the pro�les of mean velocity, shear stress, turbulent kinetic energy and

dissipation rate for di�erent models. As is evident, predictions of the present, SSGZ and
MCH models agree well with the DNS data. However, the MCH model predicts a peak
of �+ at a slightly shifted location. In strong contrast, the present and SSGZ models pro-
vide a maximum �+ at the wall which is more in line with the experimental and DNS
data.
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Figure 6. Channel �ow predictions compared with DNS results at Re�=180.
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Figure 7. Normal stress pro�les in channel �ow at Re�=180.

Pro�les of the turbulent normal stress components are compared with the DNS data in
Figure 7. In the present model investigated herein, the in�uence of the damping function f�
is an important factor in predicting the energy components for the channel �ow. Figure 7(a)
shows that relative to the DNS data, the energy component uu+ is underpredicted and vv+=ww+

is overestimated in the region con�ned to 0¡y+¡60. As f� is removed from the nonlinear
terms on the right-hand side in Equation (9), the present model provides the closest agreement
with the DNS data, shown in Figure 7(b). Note that no appreciable changes are found in other
(i.e. u+, uv+, k+ and �+) pro�les in this case. Nevertheless, this is an unconventional practice
and therefore, remains unattempted hereinafter.

3.2. Flat plate boundary layer �ow

The performance of the proposed model is further contrasted with the experimental data
of the �ow over a �at plate with a high free stream turbulence intensity. The test case is
taken from ‘ERCOFTAC’ Fluid Dynamics Database [40]. Measurements down to x=1:495m
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Figure 8. Streamwise skin friction coe�cient of boundary layer �ow.

which corresponds to Rex ≈ 94 000, are made by Coupland at Rolls-Royce. The inlet velocity
is 9:4m=s and the pressure gradient is zero. The upstream turbulence intensity Tu=6:0%,

de�ned as Tu=
√

2
3k=Uref , where Uref indicates the reference velocity. The dissipation is set

so that the decay of free stream turbulence is in balance [41].
Computations begin 16 cm ahead of the leading edge and symmetric conditions are applied.

The length and height of the grid are 1.6 and 0:3m, respectively. The near-wall grid node is
located at y+¡1:0, except the point at the leading edge (y+ =2:1). The grid size is 96× 64
and heavily clustered near the wall.
The predicted skin friction coe�cients (Cf=2u2�=U

2
ref ) are compared with the experimental

data in Figure 8. Both the SSGZ and MCH models, having the wall distance in the damping
functions provide earlier transition than that seen in the experiment, coincident with Savill’s
investigation [42]. Although the present model uses the wall-distance to characterize near-
wall viscous e�ects on turbulence, returns the best skin friction in terms of its magnitude
and trend. The physical reasoning is that the nonlinear eddy viscosity model resolves normal
stress anisotropy and returns a substantially di�erent response of turbulence to rotational and
irrotational straining, in accord with reality [41]. Seemingly, the agreement of all models with
the experiment is fairly good toward the end of the transition (e.g. beyond x=0:195m).

3.3. Backward-facing step �ow

To ascertain the performance in complex separated and reattaching turbulent �ows, the present
model is applied to the �ow over a backward-facing step. The computations are conducted
corresponding to the experimental case with zero de�ection of the wall opposite to the step, as
investigated by Driver and Seegmiller [43]. The reference velocity Uref = 44:2m=s and the step
height h=0:0127m. The ratio between the channel height and the step height is 9, and the
step height Reynolds number is Re=3:75× 104. At the channel inlet, the Reynolds number
based on the momentum thickness is Re�=5:0× 104.
For the computations, grids are arranged in two blocks. The smaller one (extended from

the inlet to the step) contains a 16× 48 nonuniform grid and the grid size for other one
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is 120× 80. The maximum height of the �rst near-wall grid node is at y+¡1:5. The inlet
conditions are speci�ed four step heights upstream of the step corner and the outlet boundary
conditions are imposed 30 step heights downstream of the step corner. The inlet pro�les for
all dependent variables are generated by solving the models at the appropriate momentum
thickness Reynolds number. All the quantities shown below are normalized by the step height
h and the experimental reference free stream velocity Uref , provided that the distance x=h is
measured exactly from the step corner.
Computed and experimental friction coe�cients Cf along the step side wall are plotted in

Figure 9. As is observed, all models are in good agreement with the data. However, the SSGZ
model exhibits nonphysical trend in the Cf pro�le near the corner at the base of the step. This
is probably due to the improper behaviour of the viscous damping functions employed. The
positive Cf that starts from x=h=0 is due to a secondary eddy which sits in the corner at the
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Figure 9. Skin friction coe�cient along the bottom wall of step �ow.
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Figure 10. Mean velocity pro�les at selected locations for step �ow.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1135–1157



1152 M. M. RAHMAN AND T. SIIKONEN

 0

 1

 2

 3

 4

 5

 6

-1  0  1  2

y/
h

-100uv/U2
ref

-1  0  1  2

-100uv/U2
ref

-1  0  1  2

-100uv/U2
ref

x/h=4.0

Present
SSGZ
MCH

EXPT

 0

 1

 2

 3

 4

 5

 6

y/
h

x/h=6.0

Present
SSGZ
MCH

EXPT

 0

 1

 2

 3

 4

 5

 6

y/
h

x/h=8.0

Present
SSGZ
MCH

EXPT

Figure 11. Shear stress pro�les at selected locations for step �ow.
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Figure 12. Kinetic energy pro�les at selected locations for step �ow.

base of the step, inside the main recirculation region. The recirculation lengths predicted by
the present, SSGZ and MCH models are 6:1h, 6:1h and 6:8h, respectively. The experimental
value of the reattachment length is 6:26± 0:1, making a fairly good correspondence with
all models.
The streamwise mean velocity pro�les at three representative positions are depicted in

Figure 10. Obviously, the predictions of all models are in good agreement with the
experiment. Comparisons are extended to the distributions of Reynolds shear stress and the
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Figure 13. Skin friction coe�cients of di�user �ow: (a) along the de�ected bottom
wall; and (b) along the straight top wall.

corresponding turbulent kinetic energy at di�erent x=h locations behind the step corner, as
shown in Figures 11 and 12. A closer inspection of the distribution indicates that all model
predictions have satisfactory agreement with the experimental data in both the recirculation
and recovery regions.

3.4. Asymmetric plane di�user �ow

To further evaluate the performance, the model is applied to simulate the �ow in a plane
asymmetric di�user with an opening angle of 10◦, for which measurements are available [44].
The expansion ratio of 4.7 is su�cient to produce a separation bubble on the de�ected wall.
Hence the con�guration provides a test case for smooth, adverse pressure-driven separation.
The entrance to the di�user consists of a plane channel to invoke fully developed �ow
with Re=2:0× 104 based on the centerline velocity Uref and the inlet channel height h.
Computations involving a 120× 72 nonuniform grid resolution are considered to be
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Figure 14. Mean velocity pro�les at selected locations for di�user �ow.
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Figure 15. Shear stress pro�les at selected locations for di�user �ow.

accurate to describe the �ow characteristics. The length of the computational domain is 76h.
The thickness of the �rst cell remains below one in y+ units on both the de�ected and
�at walls.
Figures 13(a) and (b) portray the predicted skin friction coe�cients Cf. The performance

of both the present and MCH models evinces an encouraging qualitative agreement with
measurements. Apparently, the ambiguous prediction regarding the SSGZ model demands
a higher value for the proposed correction in the � equation to render the model results
compatible with the experiment. It seems likely that the SSGZ model shows no separation.
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Figure 14 exhibits the mean velocity pro�les at three representative positions. The overall
performance in predicting the velocity pro�les is the best for the present model. Toward
downstream of the di�user the computed values of mean velocities, pertaining to both the
SSGZ and MCH models become noticeably smaller than the data shown, except near the
wall. In principle, the �ow associated with the separation bubble is characterized by strongly
anisotropic turbulence. The inaccurately predicted velocity �elds of the linear variants are
attributable to their inability in appropriately responding to strong anisotropy.
Pro�les of the shear stress at three representative streamwise positions are given in

Figure 15. As is observed, the present model predictions are in broad accord with the
measured data. The superiority of the proposed model over the linear variants is once more
ascertained. The comparisons of predicted and measured turbulent normal stresses are
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Figure 16. Normal stress pro�les at selected locations for di�user �ow.
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displayed in Figure 16 at various x=h locations. No results arising from the linear models have
been included here as these models are obviously unable to predict realistic levels of normal
stress anisotropy. As seen, the present model replicates pronounced turbulence anisotropy for
uu and vv, in line with the experimental data.

4. CONCLUSIONS

The present model accounts for the near-wall and low-Reynolds number e�ects originating
from the physical requirements. The model coe�cient C�1 which is sensitized to both the mean
strain rate and rotation rate �elds, and a secondary positive source term in the dissipation
equation enhance dissipation in near-wall regions. It enforces the realizability constrains as
con�rmed by the anisotropy invariant map and invokes a simple wall-boundary condition for
�. Contrasting the predicted results with the experimental data for well-documented �ows,
consisting of a fully developed channel �ow, a �at plate boundary layer �ow with zero
pressure gradient, a backward facing step �ow and an asymmetric di�user �ow demonstrates
that the new model is capable of reproducing the skin friction coe�cients and turbulent
quantities with reasonable accuracy. The comparisons approve that the present ASM provides
signi�cant improvement over the linear variants of k–� eddy viscosity models and has good
potential to be a practical tool in engineering applications.
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